2017
DOI: 10.1063/1.5004713
|View full text |Cite
|
Sign up to set email alerts
|

Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

Abstract: In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable comput… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
5
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(6 citation statements)
references
References 47 publications
0
5
0
1
Order By: Relevance
“…Ein gängiger Workaround ist die Dekontraktion der Standardbasissätze, was allerdings den Rechenaufwand erhöht. Weitere Ansätze sind numerische Techniken 20) und anisotrope Basissätze, 21) die aber bislang noch nicht standardmäßig genutzt werden.…”
Section: Besondere Herausforderungen In Ff-berechnungenunclassified
“…Ein gängiger Workaround ist die Dekontraktion der Standardbasissätze, was allerdings den Rechenaufwand erhöht. Weitere Ansätze sind numerische Techniken 20) und anisotrope Basissätze, 21) die aber bislang noch nicht standardmäßig genutzt werden.…”
Section: Besondere Herausforderungen In Ff-berechnungenunclassified
“…An alternative is to use anisotropic GTOs; , however, they introduce new types of challenges. As the magnetic field interaction confines movement in the direction orthogonal to the field (see section ), the anisotropic GTO basis set splits the exponents in the directions parallel and orthogonal to the field, which complicates the optimization of the exponents. Moreover, because the basis set is formed by the product of these two sets of exponents, the number of basis functions explodes if the basis is required to be accurate for a range of magnetic field strengths. The use of anisotropic GTOs also requires dedicated approaches, , and such basis functions are supported in few programs.…”
Section: Introductionmentioning
confidence: 99%
“…Accurate theoretical and experimental methods used to investigate the behavior of atoms in a strong magnetic field. W. Zhu and S. B. Trickey [18] used anisotropic Gaussian type orbital basis functions to calculate H through C (1 ≤ Z ≤ 6) and ions Li + , Be + and B + in a wide range of magnetic field (B) (0 ≤B ≤2000 (a.u.)) which showed an accuracy better than single-electron basis sets.…”
Section: Introductionmentioning
confidence: 99%