2024
DOI: 10.3390/app14188575
|View full text |Cite
|
Sign up to set email alerts
|

Accurate and Reliable Food Nutrition Estimation Based on Uncertainty-Driven Deep Learning Model

DaeHan Ahn

Abstract: Mobile Near-Infrared Spectroscopy (NIR) devices are increasingly being used to estimate food nutrients, offering substantial benefits to individuals with diabetes and obesity, who are particularly sensitive to food intake. However, most existing solutions prioritize accuracy, often neglecting to ensure reliability. This oversight can endanger individuals sensitive to specific foods, as it may lead to significant errors in nutrient estimation. To address these issues, we propose an accurate and reliable food nu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 36 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?