2022
DOI: 10.1101/2022.04.04.22273382
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Accurate diagnosis of atopic dermatitis by applying random forest and neural networks with transcriptomic data

Abstract: Atopic dermatitis (AD) is one of the most common inflammatory skin diseases. But the great heterogeneity of AD makes it difficult to design an accurate diagnostic pipeline based on traditional diagnostic methods. In other words, the AD diagnosis has suffered from an inaccurate bottleneck. Thus, it is necessary to develop a novel and accurate diagnostic model to supplement existing methods. The recent development of advanced gene sequencing technologies enables potential in accurate AD diagnosis. Inspired by th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 42 publications
0
0
0
Order By: Relevance