The objective of this paper is to investigate human motion in forest medium with swaying tree components due to time-varying wind effects and to observe the characteristics of the received Doppler signature from the scene. We provide the results of an accurate model accounting for the key contributions to the Doppler signature in this scenario. A realistic walking motion is generated using an analytical model extracted from empirical data. The swaying canopy motion is modeled by employing a spring response mechanism to the wind force. The backscattered field calculations from the scene comprise of contributions from the forest (including trunks, branches, and the ground) and human, and the interactions between them. An analytical forest scattering model, which accounts for the ground effects, is used to calculate the contribution from the forest. The attenuation effects due to the vegetation are accounted for. In order to characterize the effects of human motion accurately, a full wave technique, namely, method of moments (MOM) enhanced with fast multipole method (FMM), is employed for the human scattering calculations. A parallel version of MOM-FMM is implemented on a graphics processing unit based cluster to handle the large problem size. The human walking signatures created by the model are analyzed for different winds.