Neuromorphic hardware, the new generation of non-von Neumann computing system, implements spiking neurons and synapses to spiking neural network (SNN)-based applications. The energy-efficient property makes the neuromorphic hardware suitable for power-constrained environments where sensors and edge nodes of the internet of things (IoT) work. The mapping of SNNs onto neuromorphic hardware is challenging because a non-optimized mapping may result in a high network-on-chip (NoC) latency and energy consumption. In this paper, we propose NeuMap, a simple and fast toolchain, to map SNNs onto the multicore neuromorphic hardware. NeuMap first obtains the communication patterns of an SNN by calculation that simplifies the mapping process. Then, NeuMap exploits localized connections, divides the adjacent layers into a sub-network, and partitions each sub-network into multiple clusters while meeting the hardware resource constraints. Finally, we employ a meta-heuristics algorithm to search for the best cluster-to-core mapping scheme in the reduced searching space. We conduct experiments using six realistic SNN-based applications to evaluate NeuMap and two prior works (SpiNeMap and SNEAP). The experimental results show that, compared to SpiNeMap and SNEAP, NeuMap reduces the average energy consumption by 84% and 17% and has 55% and 12% lower spike latency, respectively.