Despite the increasing role of machine learning in various fields, very few works considered artificial intelligence for frequency estimation (FE). This work presents a comprehensive analysis of deep-learning (DL) approach for frequency estimation of single-tones. It is shown that DL network with two layers having a few nodes can estimate frequency more accurately than well-known classical techniques. The study is comprehensive, filling gaps of existing works, where it analyzes error under different signal-to-noise ratios, numbers of nodes, and numbers of input samples; also, under missing SNR information. It is found that DL-based FE is not significantly affected by SNR bias or number of nodes. DL-based approach can work properly using minimal number of input nodes N at which classical methods fail. It is possible for DL to use as little as two layers with two or three nodes each, with complexity of O{N} versus O{Nlog2 (N)} for DFT-based FE, noting that less N is required for DL. Hence, DL can significantly reduce FE complexity, memory, cost, and power consumption, making DL-based FE attractive for resource-limited systems like some IoT sensor applications. Also, reduced complexity opens the door for hardware-efficient implementation using short word-length (SWL) or time-efficient software-defined radio (SDR) communications.