A new experimental high-pressure setup for measuring diffusion coefficients in supercritical fluids, based on Taylor dispersion method, and using an FTIR detector to operate up to 25.0 MPa was designed and optimized. Tracer diffusivities, D12, of toluene and benzene in supercritical carbon dioxide were measured in the temperature range of 306.15–320.15 K, and pressure range of 7.5–17 MPa to evaluate the setup and experimental protocol. The effects of flow velocity, volume of the cell, absorbance at different wavenumbers on the diffusion coefficient as well as all parameters respecting the Taylor dispersion method have been analyzed. The obtained diffusion coefficients are in excellent agreement with the available literature data. The dependence of D12 on temperature, pressure, and solvent density were examined. Some correlation models based on the hydrodynamic theory were used to estimate the diffusion coefficients in supercritical carbon dioxide, which is the best agreement obtained for an improved version of the Wilke–Chang model.