PROLOGUE ▪ Abstract In 1999 we celebrate the 50th anniversary of the initial bringing into operation of the Palomar 200-inch Hale telescope. When this telescope was dedicated, it opened up a much larger and clearer window on the universe than any telescope that had gone before. Because the Hale telescope has played such an important role in twentieth century astrophysics, we decided to invite one or two of the astronomers most familiar with what has been achieved at Palomar to give a scientific commentary on the work that has been done there in the first fifty years. The first article of this kind which follows is by Allan Sandage, who has been an active member of the staff of what was originally the Mount Wilson and Palomar Observatories, and later the Carnegie Observatories for the whole of these fifty years. The article is devoted to the topics which covered the original goals for the Palomar telescope, namely observational cosmology and the study of galaxies, together with discoveries that were not anticipated, but were first made at Palomar and which played a leading role in the development of high energy astrophysics. The Palomar work first showed how optical astronomy would be the key to our understanding of observations made in other parts of the electromagnetic spectrum, particularly at radio wavelengths and at X-ray energies. —Geoffrey Burbidge, Editor An account is given of the history of two observational programs set for the Palomar 200-inch telescope, one by Walter Baade and the other by Edwin Hubble near the start of the scheduled operation of the telescope 50 years ago. The review is partly an assessment of whether, and how well, these programs have been carried to completion, and partly an account of the response of Palomar to new discoveries and developments not foreseen in 1950. Stellar evolution, the discovery of variations in the metallicity of stars of different populations, the chemical evolution of the Galaxy, the Cepheid P-L relation, the redshift-distance relation of the expanding universe, and the extragalactic distance scale are discussed as they relate to the predictions for progress on the programs set out by Baade and Hubble. Not foreseen was the invention and development of radio astronomy and high energy astrophysics, leading to the discovery of radio galaxies, quasars, and the gradual realization of violent events, both in stars and in galaxies. The review is highly restricted to these subjects, covering only three areas among the totality of the work in observational astrophysics studied during the first 50 years at Palomar.