The rapid evolution of smart cities relies heavily on advancements in wireless communication systems and extensive IoT networks. This paper offers a comprehensive review of the critical role and future potential of integrating unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) to enhance Internet of Vehicles (IoV) systems within beyond-fifth-generation (B5G) and sixth-generation (6G) networks. We explore the combination of quasi-optical millimeter-wave (mmWave) signals with UAV-enabled, RIS-assisted networks and their applications in urban environments. This review covers essential areas such as channel modeling and position-aware beamforming in dynamic networks, including UAVs and IoVs. Moreover, we investigate UAV navigation and control, emphasizing the development of obstacle-free trajectory designs in dense urban areas while meeting kinodynamic and motion constraints. The emerging potential of RIS-equipped UAVs (RISeUAVs) is highlighted, along with their role in supporting IoVs and in mobile edge computing. Optimization techniques, including convex programming methods and machine learning, are explored to tackle complex challenges, with an emphasis on studying computational complexity and feasibility for real-time operations. Additionally, this review highlights the integrated localization and communication strategies to enhance UAV and autonomous ground vehicle operations. This tutorial-style overview offers insights into the technical challenges and innovative solutions of the next-generation wireless networks in smart cities, with a focus on vehicular communications. Finally, future research directions are outlined.