Objective. Understanding the intricate relationship between structural connectivity (SC) and functional connectivity (FC) is pivotal for understanding the complexities of the human brain. To explore this relationship, the heat diffusion model (HDM) was utilized to predict FC from SC. However, previous studies using the HDM have typically predicted FC at a critical time scale in the heat kernel equation, overlooking the dynamic nature of the diffusion process and providing an incomplete representation of the predicted FC. Approach. In this study, we propose an alternative approach based on the HDM. First, we introduced a multiple-timescale fusion method to capture the dynamic features of the diffusion process. Additionally, to enhance the smoothness of the predicted FC values, we employed the Wavelet reconstruction method to maintain local consistency and remove noise. Moreover, to provide a more accurate representation of the relationship between SC and FC, we calculated the linear transformation between the smoothed FC and the empirical FC. Main results. We conducted extensive experiments in two independent datasets. By fusing different time scales in the diffusion process for predicting FC, the proposed method demonstrated higher predictive correlation compared with method considering only critical time points (SingleScale). Furthermore, compared with other existing methods, the proposed method achieved the highest predictive correlations of 0.6939±0.0079 and 0.7302±0.0117 on the two datasets respectively. We observed that the visual network at the network level and the parietal lobe at the lobe level exhibited the highest predictive correlations, indicating that the functional activity in these regions may be closely related to the direct diffusion of information between brain regions. Significance. The multiple-timescale fusion method proposed in this study provides insights into the dynamic aspects of the diffusion process, contributing to a deeper understanding of how brain structure gives rise to brain function.