The organic anion transporter Adenosine triphosphate Binding Cassette subfamily C member 1 (ABCC1), also known as MRP1, has been demonstrated in murine models of Alzheimer's disease (AD) to export amyloid beta (Abeta) from the endothelial cells of the blood-brain barrier to the periphery, and that pharmaceutical activation of ABCC1 can reduce amyloid plaque deposition in the brain. Here, we show that ABCC1 is not only capable of exporting Abeta from the cytoplasm of human cells, but also that it's overexpression significantly reduces Abeta production and increases the ratio of alpha-versus beta-secretase mediated cleavage of the Amyloid Precursor Protein (APP), likely via indirect modulation of alpha-, beta-, and gamma-secretase activity.
Background:Alzheimer's disease (AD) is the sixth leading cause of death in the United States, and no current treatment exists that can effectively prevent or slow progression of the disease. For this reason, it is imperative to identify novel drug targets that can dramatically alter the physiological cascades that lead to neuronal cell death resulting in dementia and ultimately loss of life.The deposition of aggregated amyloid beta (Abeta) in the brain is one of the major pathological hallmarks of AD, and Abeta species result from the differential cleavage of the Amyloid Precursor Protein (APP) (Selkoe and Hardy, 2016). APP is a single-pass transmembrane protein that is highly expressed in the brain and can be cleaved by a variety of secretases to produce unique peptide fragments, the two major pathways of which are known as the alpha-and beta-secretase pathways (Selkoe and Hardy, 2016). Cleavage by an alpha-secretase releases the soluble APP alpha (sAPPalpha) fragment from the membrane into the extracellular space, which has been shown to be neuroprotective and increase neurogenesis, in vitro (Ohsawa et al., 1999), as well as play a positive role in synaptic plasticity (Ring et al., 2007;Hick et al., 2015) and memory formation (Bour et al., 2004). Alpha-secretase cleavage of APP is the by far the most common cleavage of APP in the brain (Haass and Selkoe, 1993). If, instead, the APP molecule is cleaved by a betasecretase, soluble APP beta (sAPPbeta) is released into the extracellular space, and subsequent cleavage of the remaining membrane-bound fragment by the gamma-secretase complex results in the production of Abeta, the peptide that aggregates to form amyloid plaques (Baranello et al., 2015). Because alpha-secretases cleave No GRIK1 ENSG00000171189 21 -2.6364395 -4.9042159 9.38E-07 1.52E-05 Stimulation of GRIK1 with kainic acid increased Abeta and oligomeric Abeta, likely because GRIK1 signaling increases phosphorylation and activation of NF-kappa B (Ruan et al., 2019), a transcription factor. Therefore, if the downregulation of GRIK1 observed in our experiment played a role in reducing extracellular Abeta, we would expect that the lack of GRIK1 signalling through NF-kappa B alters transcription of genes capable of altering APP metabolism, rather than GRIK1 directly playing...