Evolution of symbiotic plant-microbe interactions has provided mankind a powerful and environment-friendly means to increase yield of agricultural crops. Here, we report that some azide resistant mutants of two microbial strains can significantly enhance the productivity of cotton varieties, as an attractive and cheap biological substitute of chemical fertilizers, for improved yield of an important cash crop, without any untoward impacts. Sodium azide resistant mutants were isolated from each strain of Azospirillum brasilense and Acetobacter diazotrophicus on different concentrations of sodium azide ranging from 5 Á60mg/ml. These azide resistant mutants were assessed for their performance on cotton (varieties H-117, HD-123) for various parameters. Inoculation of cottonseeds with mutants obtained better results than inoculation with their respective parental strains. Azide resistant mutants, when used as biofertilizers, showed increased plant height, early flowering, more yield, and high biomass and total nitrogen content. They also increased, in cotton genotypes, the indole acetic acid production and ammonia excretion due to high nitrogenase activity.