Geophysical observations of palaeolandslides in offshore settings include long and relatively thin failures that occur on very mild slopes. Back analysis of such failures using the limiting equilibrium approach and measured geotechnical soil properties is typically used to inform the likely causes of past failures. An assessment can then be made of the present day significance of causal factors (e.g. the presence of excess pore water pressure), with the limiting equilibrium approach used to assess factors of safety for present-day slopes and predict the potential size of any future failures. However, for long, thin slides, use of the limiting equilibrium approach can lead to the conclusion that either a significantly large seismic trigger or other, abnormal geological condition was required to initiate failure. A result has been the focusing of academic research into other failure causes and conditioning factors. Further, the stability of the present day seabed for offshore developments can be overestimated, given the rarity of large seismic events in many areas and geotechnical measurements that not always show abnormal soil conditions. The shear band propagation approach offers an alternative view, where an initial small failure can grow into a larger failure at the point of initiation. A result is that an explanation of the conditions leading to failure can be attributed to many submarine landslides. Further, accounting for the potential propagation of a shear band in the future prediction of submarine landslides can result in greater predicted failure sizes and lower factors of safety than using limiting equilibrium only. The application of the shear band propagation approach to back analyse a palaeolandslide in the ACG Field, Caspian Sea, is used to demonstrate the methodology and compare with results using the limiting equilibrium approach. Results show that the shear band propagation approach successfully predicts observed failure geometries and suggests triggering conditions from a lower magnitude seismic event compared to that predicted using limiting equilibrium. The future application of shear band propagation theory to submarine landslide analysis is also discussed.