Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The use of the Diagnostic Fracture Injection Test (DFIT) technique as a means of pre-frac investigation has become relatively routine in the oilfield, particularly to understand the reservoir properties and then subsequently optimize the hydraulic fracture design. A key component of an effective DFIT is the performance of an effective After Closure Analysis (ACA) to assess the transmissibility of the formation and thereby allow for effective design. BP Oman is developing the Barik formation, within the Khazzan field, which is a low-permeability conventional tight-gas reservoir within Block 61 of the Sultanate of Oman. The reservoir is comprised of a series of tightly interbedded sandstones and shales, with substantial shale breaks between the principal sand lobes. During the Appraisal and Development well sequence to date, BP Oman have performed DFIT operations in over 50 vertical wells, within the Barik Formation. Each one of these wells was then subject to placement of a large (one million lb) hydraulic fracture treatment. Each treatment was then followed by a standard clean-up programme and when possible a PBU, with subsequent placement on production into the main gathering system. This paper seeks to demonstrate that there is unambiguous evidence of a coherent correlation between the petro-physical Barik open-hole logs, the transmissibility value (as estimated from the ACA), the conventional Pressure Transient Analysis (PTA) as well as the long-term production behaviour. Additionally, the paper will investigate the key aspects of the actual DFIT execution, the data gathering and the analysis that can impact the quality of the correlation. The paper will go on to demonstrate the most efficient methods of achieving the most accurate assessment of the formation transmissibility; that is both indicative and subsequently helpful for the fracture design and post-fracture productivity prediction. This paper successfully describes a 50 well, and growing, DFIT analysis programme and the suitability of the use of the results from the subsequently performed ACAs for forward planning and hydraulic fracture design. Providing a suite of useful and helpful insights, suggestions and recommendations; into how DFIT, for ACA, should be executed in the field; the paper adds an extensive case history to the industry database for future consideration.
The use of the Diagnostic Fracture Injection Test (DFIT) technique as a means of pre-frac investigation has become relatively routine in the oilfield, particularly to understand the reservoir properties and then subsequently optimize the hydraulic fracture design. A key component of an effective DFIT is the performance of an effective After Closure Analysis (ACA) to assess the transmissibility of the formation and thereby allow for effective design. BP Oman is developing the Barik formation, within the Khazzan field, which is a low-permeability conventional tight-gas reservoir within Block 61 of the Sultanate of Oman. The reservoir is comprised of a series of tightly interbedded sandstones and shales, with substantial shale breaks between the principal sand lobes. During the Appraisal and Development well sequence to date, BP Oman have performed DFIT operations in over 50 vertical wells, within the Barik Formation. Each one of these wells was then subject to placement of a large (one million lb) hydraulic fracture treatment. Each treatment was then followed by a standard clean-up programme and when possible a PBU, with subsequent placement on production into the main gathering system. This paper seeks to demonstrate that there is unambiguous evidence of a coherent correlation between the petro-physical Barik open-hole logs, the transmissibility value (as estimated from the ACA), the conventional Pressure Transient Analysis (PTA) as well as the long-term production behaviour. Additionally, the paper will investigate the key aspects of the actual DFIT execution, the data gathering and the analysis that can impact the quality of the correlation. The paper will go on to demonstrate the most efficient methods of achieving the most accurate assessment of the formation transmissibility; that is both indicative and subsequently helpful for the fracture design and post-fracture productivity prediction. This paper successfully describes a 50 well, and growing, DFIT analysis programme and the suitability of the use of the results from the subsequently performed ACAs for forward planning and hydraulic fracture design. Providing a suite of useful and helpful insights, suggestions and recommendations; into how DFIT, for ACA, should be executed in the field; the paper adds an extensive case history to the industry database for future consideration.
Saih Rawl gas is located in the South Oman Salt Basin. There are two main formations targeted for gas production; Barik & Miqrat Formations. These formations are tight and exhibit low permeability. In order to enhance gas production, these formations have to be hydraulically stimulated. The main objectives of this paper is to demonstrate the petrophysical properties of the hydraulically fractured zones. Assess gas flow contribution thru the individual zones measured by production logging and comparing with the amount of proppant placed in the formation. In addition, the paper discusses reservoir properties and characteristics obtained from logging, post stimulation operations results and post stimulation gas production. The paper discusses 20 wells; 10 from the crest and 10 from the flank. The two formations Barik and Miqrat cover approximately 17 sub reservoir units. The total overall placement ratio is 95% and 78% for the crest and flank respectively with 156 hydraulic stimulation stages. It was observed that five sub reservoir units proved to be challenging to place the desired proppant. The maximum operating pressure is reached before achieving the desired proppant concentration leading to a screen out; concentrations of 2 – 3 pounds per gallon. Petrophysical evaluation of porosity and permeability cross plots showed a linear relationship in the wells in the crest. While there was no clear relationship was seen in the flank. Radioactive tracers used are to understand if there is any proppant propergation into the higher or lower zones. Not all the five challenging sub reservoir units showed propergation to other units. The wells located in the crest showed a better production rate as compared to the flank. The paper highlights the importance of the using petrophysical evaluation to optimize hydraulic fracturing design for successful operations.
Development of the tight gas Khazzan Field in Sultanate of Oman has progressed through an extensive learning curve over many years. Thereby, the hydraulic fracturing design was fine-tuned and optimized to properly fit the requirements of the challenging Barik reservoir in this area. In 2018, BP Oman started developing the Barik reservoir in the Ghazeer Field, which naturally extends the reservoir boundary south of Khazzan Field. However, the Barik reservoir in the Ghazeer area is thicker and more permeable than in the Khazzan Field; therefore, the hydraulic fracturing design required adjustment to be optimized to directly reflect the reservoir needs of the Ghazeer Field. A comprehensive hydraulic fracturing design software was used for this optimization study and sensitivity analysis. This software is a plug-in to a benchmark exploration and production software platform and provides a complete fracturing optimization loop from hydraulic fracturing design sensitivity modelled with a calibrated mechanical earth model to detailed production prediction using the incorporated reservoir simulator. One of the stimulated wells from Ghazeer Field was used as the reference for this study. The reservoir sector model was created and adjusted to match actual data from this well. The data include fracturing treatment execution response, surveillance data such as radioactive tracers, bottomhole pressure gauge, and pressure transient analysis. Reservoir properties were also adjusted to match long-term production data obtained for this reference well. After the reservoir model was fully validated against actual data, multiple completion and fracturing scenarios were simulated to estimate potential production gain and thus find an optimal hydraulic fracturing design for Ghazeer Field. Many valuable outcomes can be concluded from this study. The optimal treatment design was identified. The value of fracture half-length versus conductivity was clarified for this area. The comparison between single-stage fracturing versus multistage treatment across the thick laminated Barik reservoir in a conventional vertical well was derived. The drainage of different layers with variable reservoir properties was compared for a range of different scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.