A time domain sub-sampling technique that can be applied to wired or wireless orthogonal frequency division multiplexing systems is described in this paper. Focus is given on the specific conditions that allow optimal sparse information recovery. The advantage of the proposed method is that it can be implemented with very low complexity hardware, since it is based on deterministic non-iterative operations. A sub-sampling operating mode is used when sparse information is detected by the receiver and can be applied up to 75 % of the time. The power consumed by the various modules can be significantly reduced during the sub-sampling mode. These modules include the analogue/digital converter and the (inverse) Fast Fourier Transform, as well as the buffering memory used by these modules. The signal to noise ratio analysis shows that an optimal signal reception can be achieved if low order quadrature amplitude modulation and Fourier Transform size are used. Full information recovery can be achieved in some cases of wired communication. A bit error rate lower than 10 −3 is measured, if fewer than 1/16 of the Fourier Transform input symbols are omitted at the receiver. A space-time block code system is also modelled, to test the proposed sub-sampling method in a wireless environment.