Bees play a vital role as pollinators worldwide and have influenced how flower colour signals have evolved. The Western honey bee, Apis mellifera (Apini), and the Buff-tailed bumble bee, Bombus terrestris (Bombini) are well-studied model species with regard to their sensory physiology and pollination capacity, although currently far less is known about stingless bees (Meliponini) that are common in pantropical regions. We conducted comparative experiments with two highly eusocial bee species, the Western honey bee, A. mellifera, and the Australian stingless bee, Tetragonula carbonaria, to understand their colour preferences considering fine-scaled stimuli specifically designed for testing bee colour vision. We employed stimuli made of pigment powders to allow manipulation of single colour parameters including spectral purity (saturation) or colour intensity (brightness) of a blue colour (hue) for which both species have previously shown innate preferences. Both A. mellifera and T. carbonaria demonstrated a significant preference for spectrally purer colour stimuli, although this preference is more pronounced in honey bees than in stingless bees. When all other colour cues were tightly controlled, honey bees receiving absolute conditioning demonstrated a capacity to learn a high-intensity stimulus significant from chance expectation demonstrating some capacity of plasticity for this dimension of colour perception. However, honey bees failed to learn low-intensity stimuli, and T. carbonaria was insensitive to stimulus intensity as a cue. These comparative findings suggest that there may be some common roots underpinning colour perception in bee pollinators and how they interact with flowers, although species-specific differences do exist.