Fractured-vuggy reservoirs are crucial for increasing unconventional oil storage and production, but the controlling mechanism of this dominant flow channel remains vague, and the jamming mechanism of modulator particles is unclear. This study explores the filling and jamming processes of particles in the fractures by conducting a computational fluid dynamics−discrete element method (CFD−DEM) coupled simulation, considering the variation of fracture width, fluid velocity, particle size, and concentration. Results suggest that four sealing modes are proposed: normal filling, local jamming, complete sealing, and sealing in the main fracture. The ratio of particle size to the main fracture width exerts the primary role, with the ratio having a range of 0.625 < D/W ≤ 0.77 revealing complete jamming. Furthermore, an optimal particle size for achieving stable sealing is observed when the particle size varies from 2 to 2.5 mm. A higher concentration of particles yields better results in the fracture-shrinking model. Conversely, a greater velocity worsens the sealing effect on fractures. This research can offer technical support for the large-scale dissemination of flow regulation technology.