While partial nitrification (PN) has the potential to reduce energy for aeration, it has proven to be unstable when treating low-strength wastewater. This study introduces an innovative combined strategy incorporating a low rate of oxygen supply, pH control, and sulfide addition to selectively inhibit nitriteoxidizing bacteria (NOB). This strategy led to a stable PN in a laboratory-scale membrane aerated biofilm reactor (MABR). Over a period of 260 days, the nitrite accumulation ratio exceeded 60% when treating synthetic sewage containing 50 mg NH 4 + −N/L. Through in situ activity testing and high-throughput sequencing, the combined strategy led to low levels of nitrite-oxidation activity (<5.5 mg N/m 2 h), Nitrospira species (relative abundance <1%), and transcription of nitrite-oxidation genes (undetectable). The addition of sulfide led to simultaneous PN and autotrophic denitrification in the single-stage MABR, resulting in over 60% total inorganic nitrogen removal. Sulfur-based autotrophic denitrification consumed nitrite and inhibited NOB conversion of nitrite to nitrate. The combined strategy has potential to be applied in large-scale sewage treatment and deserves further exploration.