Background
Pregnancy-induced utero-placental growth, angiogenic remodeling, and enhanced vasodilation are all partly regulated by estradiol-17β-mediated activation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. However, very little is known about the effects of alcohol on these maternal utero-placental vascular adaptations during pregnancy and its potential role in the pathogenesis of Fetal Alcohol Spectrum Disorders (FASD). In this study, we hypothesized that in vitro chronic binge-like alcohol will decrease uterine arterial endothelial eNOS expression and alter its multi-site phosphorylation activity state via disruption of AKT signaling. To study the direct effects of alcohol on uterine vascular adaptations, we further investigated the effects of alcohol on estradiol-17β-induced uterine angiogenesis in vitro.
Methods
Uterine artery endothelial cells were isolated from pregnant ewes (gestational day 120-130; term = 147), Fluorescence Activated Cell sorted, validated, and maintained in culture to passage 4. To mimic maternal binge drinking patterns, cells were cultured in the absence or presence of a lower (LD) or higher dose (HD) of alcohol in a compensating sealed humidified chamber system equilibrated with aqueous alcohol for 3 h on 3 consecutive days. Immunoblotting was performed to assess expression of NO system-associated proteins and eNOS multi-site phosphorylation. Following this treatment paradigm, control and binge alcohol treated cells were passaged, grown for two days, and then treated with increasing concentrations of estradiol-17β (0.1, 1, 10, 100 nM) in the absence or presence of LD or HD alcohol to evaluate estradiol-17β-induced angiogenesis index using BrdU Proliferation Assay.
Results
LD and HD binge-like alcohol decreased uterine arterial eNOS expression (P=0.009). eNOS multi-site phosphorylation activation state was altered: P635eNOS was decreased (P=0.017), P1177 eNOS was not altered, and P495 eNOS exhibited an inverse U shaped dose-dependent relationship with alcohol. LD and HD alcohol decreased the major eNOS-associated protein cav-1 (P<0.001). However, the commonly implicated AKT pathway did not correlate with eNOS post-translational modifications. Assessment of uterine vascular adaptation via angiogenesis demonstrated that alcohol abrogated the dose-dependent proliferative effects of estradiol-17β and thus blunted angiogenesis.
Conclusions
Thus, the maternal uterine vasculature during pregnancy may be vulnerable to chronic binge-like alcohol. Altered eNOS multi-site phosphorylation also suggests that alcohol produces specific effects at the level of post-translational modifications critical for pregnancy-induced uterine vascular adaptations. Finally, the alcohol and estradiol-17β data suggest a negative impact of alcohol on estrogen actions on the uterine vasculature.