Aiming at the acid mine drainage (AMD) in zinc, copper and other heavy metals treatment difficulties, severe pollution of soil and water environment and other problems. Through the ultrasonic precipitation method, this study prepared fly ash-loaded nano-FeS composites (nFeS-F). The effects of nFeS-F dosage, pH, stirring rate, reaction time and initial concentration of the solution on the adsorption of Zn(II) and Cu(II) were investigated. The data were fitted by Lagergren first and second-order kinetic equations, Internal diffusion equation, Langmuir and Freundlich isotherm models, and combined with SEM, TEM, FTIR, TGA, and XPS assays to reveal the mechanism of nFeS-F adsorption of Zn(II) and Cu(II). The results demonstrated that: The removal of Zn(II) and Cu(II) by nFeS-F could reach 83.36% and 70.40%, respectively (The dosage was 8 g/L, pH was 4, time was 150 min, and concentration was 100 mg/L). The adsorption process, mainly chemical adsorption, conforms to the Lagergren second-order kinetic equation (R2 = 0.9952 and 0.9932). The adsorption isotherms have a higher fitting degree with the Langmuir model (R2 = 0.9964 and 0.9966), and the adsorption is a monolayer adsorption process. This study can provide a reference for treating heavy metals in acid mine drainage and resource utilization of fly ash.