ObjectiveThis retrospective observational study investigates the heterogeneity of hepatic and pancreatic fat deposition and its implications for metabolic health in individuals with obesity.MethodsA total of 706 patients with obesity underwent an MRI to quantify liver and pancreatic fat. Patients were classified into four groups based on fat deposition: no fat (None), fatty pancreas only (NAFPD), fatty liver only (NAFLD), and both conditions (NAFLD+NAFPD). Biochemical profiles, insulin resistance (Homeostatic Model Assessment for Insulin Resistance, HOMA-IR), and β-cell function were analyzed. A series of multiple linear regressions were used to investigate the independent effects of characteristics on glucose, insulin, and C-peptide at 0h. Another multiple linear regression was performed to evaluate the effects of basic characteristics on average liver fat, mean pancreatic fat, and visceral fat.ResultsThe majority (76.63%) exhibited both NAFLD and NAFPD, highlighting the heterogeneity of fat deposition among individuals with obesity. Groups with fatty liver displayed significantly higher fasting glucose, insulin, C-peptide, and HOMA-IR levels than those without fatty liver (P < 0.01). Fatty pancreas alone did not significantly influence these metabolic parameters (P > 0.05). This underscores the greater metabolic impact of hepatic fat compared to pancreatic fat.ConclusionsThe study confirms the complex heterogeneity of fat deposition in obesity, with the fatty liver being a more influential factor in metabolic disturbances than the fatty pancreas. The prevalent co-occurrence of NAFLD and NAFPD in this population underscores the need for targeted management strategies focusing on hepatic fat reduction to mitigate metabolic risk.