BACKGROUND: Biocatalytic promiscuity has attracted much attention from chemists and biochemists in recent years. Warfarin, one of the most effective anticoagulants, has been introduced for clinical use as a racemate for more than half a century. Although some different chemical strategies towards the synthesis of optically active warfarin have been reported, biocatalytic preparation of warfarin remains unexploited.
RESULTS: Lipase from porcine pancreas (PPL) was used as a biocatalyst to catalyze the Michael addition of 4‐hydroxycoumarin to α,β‐unsaturated enones in organic medium in the presence of water to synthesize warfarin and derivatives. The products were obtained in moderate to high yields (up to 95%) with none or low enantioselectivities (up to 28% ee). The influence of reaction conditions including solvents, temperature and molar ratio of substrates was systematically investigated.
CONCLUSION: Among the many reported lipase‐catalyzed Michael additions, only a few showed enantioselectivity. Therefore, this Michael addition activity of, for example, PPL is a valuable case of enantioselective lipase catalytic promiscuity. In addition, it was the first time warfarin and derivatives were prepared using a biocatalyst. Copyright © 2012 Society of Chemical Industry