2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA) 2018
DOI: 10.1109/ipta.2018.8608152
|View full text |Cite
|
Sign up to set email alerts
|

Acoustic Based Method for Automatic Segmentation of Images of Objects in Periodic Motion: detection of vocal folds edges case study

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2020
2020
2022
2022

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 23 publications
0
1
0
1
Order By: Relevance
“…However, we have noted that a properly selected image segmentation technique combined with correlated acoustic analysis allows us to objectify the delineated contour of the vocal folds and provide a compliance parameter, which is crucial for quantitative image-based segmentation results of the glottal area. In our seminal work, we proposed such an image segmentation method [41]. The method is based on comparing the segmentation result with the synchronously collected acoustic registration during the patient's phonation of the vowel /i:/.…”
Section: Related Workmentioning
confidence: 99%
“…However, we have noted that a properly selected image segmentation technique combined with correlated acoustic analysis allows us to objectify the delineated contour of the vocal folds and provide a compliance parameter, which is crucial for quantitative image-based segmentation results of the glottal area. In our seminal work, we proposed such an image segmentation method [41]. The method is based on comparing the segmentation result with the synchronously collected acoustic registration during the patient's phonation of the vowel /i:/.…”
Section: Related Workmentioning
confidence: 99%
“…[13][14] İB'nin otomatik olarak belirlenmesi için yapılan çalışmalarda ise toplam yoğunluk değişimi, hareket kestirimi gibi yöntemlerinin yanında son zamanda derin yapay sinir ağları tabanlı yöntemler kullanılmaya başlanmıştır. [15][16][17][18] Ses tellerinin vibrasyonu sırasında ses tellerinin olduğu bölgedeki yoğunluk değerlerinin zamandaki değişimi genellikle büyük olmaktadır. Bu değişimin mutlak olarak ölçülüp ortalaması alınarak İB bölgesinde yüksek değerler elde edip daha sonra elde edilen bu iki boyutlu değişim haritası veya diğer ismiyle Toplam Değişim Resmi (Total Variation Image) otomatik bulunan eşik değerler ile ikili resme dönüştürülerek ilgi bölgesinin kestirimi gerçekleştirilebilmektedir.…”
Section: Introductionunclassified