2015
DOI: 10.1063/1.4932138
|View full text |Cite
|
Sign up to set email alerts
|

Acoustic beam splitting in two-dimensional phononic crystals using self-collimation effect

Abstract: We propose two models of self-collimation-based beam splitters in phononic crystals. The finite element method is used to investigate the propagation properties of acoustic waves in two-dimensional phononic crystals. The calculated results show that the efficiency of the beam splitter can be controlled systematically by varying the radius of the rods or by changing the orientation of the square rods in the line defect. The effect of changing the side length of the square rods on acoustic wave propagation is di… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
14
0
2

Year Published

2016
2016
2024
2024

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 42 publications
(16 citation statements)
references
References 42 publications
0
14
0
2
Order By: Relevance
“…声子晶体作为一种新型的声学材料, 近年来, 已 观测并证实许多独特的物理现象 , 如负折射 [12,13] 、 声聚焦 [14][15][16][17] 、自准直 [18][19][20][21] 、Schoch效应 [22] 等, 因而在 物理学、材料学等领域受到广泛关注. Schoch效应 指的是声学中的一种非镜面反射现象, 即声波在两 种不同介质表面发生反射时, 反射点与入射点不在 同一点, 反射波束相对于传统几何反射的路径有一定 的偏移, 这个偏移称为Schoch位移 [22] .…”
Section: 引言unclassified
See 1 more Smart Citation
“…声子晶体作为一种新型的声学材料, 近年来, 已 观测并证实许多独特的物理现象 , 如负折射 [12,13] 、 声聚焦 [14][15][16][17] 、自准直 [18][19][20][21] 、Schoch效应 [22] 等, 因而在 物理学、材料学等领域受到广泛关注. Schoch效应 指的是声学中的一种非镜面反射现象, 即声波在两 种不同介质表面发生反射时, 反射点与入射点不在 同一点, 反射波束相对于传统几何反射的路径有一定 的偏移, 这个偏移称为Schoch位移 [22] .…”
Section: 引言unclassified
“…2009年, Herbison等人 [40] 采用脉 冲波代替时域谐波的新实验方法定量测量了Schoch位 移的大小. 2014年, Declercq [41][43] , 因此本文利用有限元方法计算的二维声子晶体 第一能带的等频线 [20] 来确定自准直频率, 其中频率相 http://engine.scichina.com/doi/10.1360/SSPMA2016-00475…”
Section: 引言unclassified
“…Properly conceiving their design in terms of size, shape, and arrangement, as well as choosing their density and elastic properties demonstrated great potential for attaining exceptional dynamic behavior, such as frequency bandgaps (Kushwaha and Halevi, 1994;Mártinez-Sala et al, 1995;Liu et al, 2000;Miniaci et al, 2018a), negative refraction (Morvan et al, 2010;Zhu and Semperlotti, 2016), topological protection (Mousavi et al, 2015;Süsstrunk and Huber, 2015;Pal et al, 2016;Miniaci et al, 2018b), etc. This opened up new perspectives in many fields, ranging from microelectromechanical systems to nondestructive evaluation (Pennec et al, 2010;Craster and Guenneau, 2012;Deymier, 2013), including but not limited to wave filters, waveguiding and beam splitting, sensing devices, wave splitters, vibration shielding, subwavelength imaging (Sukhovich et al, 2009;Li et al, 2015;Trainiti et al, 2015;Colombi et al, 2016;Miniaci et al, 2016Miniaci et al, , 2017Su et al, 2016;Miniaci et al, 2019).…”
Section: Introductionmentioning
confidence: 99%
“…Li et al . demonstrate an acoustic BS by introducing a line defect structure, which allows for tuning the splitting efficiency by varying the radius of the rods in the PnC 9 . The line-defect-based mechanism for acoustic beam splitting in PnCs has been generalized to have multiple outputs by employing more line defects 10 .…”
Section: Introductionmentioning
confidence: 99%