In this research work, samples of the biocomposite were manufactured using the vacuum assisted resin transfer molding (VARTM) technique, whose matrix is a polyester resin and the reinforcement is a biaxial fabric (90°) made with jute fiber. Then, tensile and flexural tests were carried out on standardized specimens under ASTM standards, in order to mechanically characterize the jute-polyester biocomposite. In both destructive tests, the results showed a linear-elastic behavior with brittle fracture and greater strength of the jute-polyester biocomposite, with respect to the thermosetting matrix’s properties. Subsequently, a finite element based static analysis was performed, with the help of the ANSYS software, to determine the mechanical behavior of interior opening handle for a car door. In it, a model sensitivity study was run to determine the influence of the mesh type and identify the convergence of mesh. Later, the static analysis results were obtained: critical zone, maximum operating stress and safety factors. The results obtained computationally validate the use of jute-polyester biocomposite, as a substitute for the manufacture of an interior opening handle for a car door. Finally, a scale model of the piece made with jute-polyester biocomposite was manufactured.