In most applied monitoring investigations using acoustic emission, measurements are carried out relatively, even though that limits the use of the extracted information. The authors believe acoustic emission monitoring can be improved by instead using absolute measurements. However, knowledge about absolute measurement in boundary restricted systems is limited. This article evaluates a method for absolute calibration of acoustic emission transducers and evaluates its performance in a boundary restricted system. Absolute measured signals of Hertzian contact excited elastic waves in boundary restricted systems were studied with respect to contact time and excitation energy. Good agreement is shown between measured and calculated signals. For contact times short enough to avoid interaction between elastic waves and initiating forces, the signals contain both resonances and zero frequencies, whereas for longer contact times the signals exclusively contained resonances. For both cases, aGreen's function model and measured signals showed good agreement.