This article presents the current state of the art regarding the use resonators in straight pipes. There is considerable need to control and reduce pressure pulsation in pipelines supplied with pulsating flows. The use of a Helmholz resonator introduces an additional degree of freedom to the analysed dynamic system. Building on previous experimental investigations by the authors, which identified the nonlinear properties of straight pipes supplied with pulsating flows, this study describes an experimental test rig, measurement methods and mechanical analogies for one (1DOF) and two (2DOF) degrees of freedom. The results are presented in the form of a 3D map of amplitude-frequency characteristics, as a function of the resonator volume determined by piston height. The dynamic properties of the described system are presented as amplitude-phase characteristics, based on a comparison of the numerical and experimental results.