The phase behaviour of K 3 H(SeO 4 ) 2 (TKHSe) above room temperature has been studied by differential scanning calorimetric (DSC), thermogravimetric analysis (TGA), simultaneous thermogravimetric and mass spectroscopy analysis (TG-MS), impedance spectroscopy (IS) and X-ray powder diffraction (XRD). Our results show that the previously claimed superionic phase transition in TKHSe at around 388 K (114.85°C) is also the onset temperature of a slow thermal dehydration that occurs at reaction sites distributed over the surface of the crystal. That is, we propose that the TKHSe undergoes simultaneously a superionic phase transition and a decomposition process with a very slow reaction rate that is evident when the sample is pulverized to fine powder, both starting at the same temperature. As a matter of fact, we observe a decrease of the magnitude of the dcconductivity on successive thermal runs in powdered sample attributed to sample decomposition that starts at the surface of the TKHSe grains, but the jump in conductivity is only a consequence of the order-disorder transition in the TKHSe phase that remains inside the grains.