This paper focuses on the noise reduction of the cylindrical structure at low frequency (130 Hz-180 Hz). The low-frequency noise response spectrum in the cylindrical cavity is obtained by using the Helmholtz resonator (HR) to reduce the noise peak amplitude. The acoustic simulation software Virtual.Lab is used to establish the finite element model of the cylindrical shell with HR, and to obtain the low-frequency acoustic response in the cylindrical cavity. The simulation model is validated by the experimental results. Then, the influence of installation position, the number of installed resonators and the resonators with different resonance frequencies in the cylindrical cavity are discussed. The results indicate that both the noise reduction band and peak amplitude are increased by installing the HR's on the cylinder shell. The noise reduction of the cylinder shell with HR installed on the upper position is larger than other situations. As the number of resonators increased, the frequency range of the noise reduction in the cylindrical cavity gradually increases, and the noise reduction of the cylinder cavity increases first and then decreases.