Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A review of contingencies related to the failure of potentially hazardous equipment of the aviation and space-rocket complexes showed that they lead to explosions, fires, deaths and destruction of infrastructure. The causes of accidents and disasters are errors in the selection of technical solutions and materials during design, imperfection of algorithms and software for flight control systems, malfunctions in on-board computers and security systems, navigation systems, engine failure, defects in components and assemblies. Examples of accidents and disasters related to technical failures leading to a violation of the tightness of the aircraft fuselage and depressurization of spacecraft are given. It is shown that the main types of damage to the units are corrosion damage, fatigue and metal wear. The conclusion is made about the negative impact of the “human factor” regarding the adoption of erroneous decisions, failure to comply with regulatory requirements and actions in extreme situations. There is a risk of fatigue cracks and degradation of the properties of stringer metal, landing gear struts, wing tail trim, fuel tanks, engine pylon flanges, and imperfect methods, equipment, and technology for monitoring fatigue defects of critical components and mechanisms of aircraft, helicopters, and space systems. It is shown that modern achievements are poorly used in research and development of physical methods and diagnostics of elastic constants of metals working under high pressure, their changes in conditions of wide temperature drops, cosmic vacuum, vibration and other influences. It is proposed to combine efforts with scientists and experts in the field of strength, resource assessment and operational safety of aviation and space technology.
A review of contingencies related to the failure of potentially hazardous equipment of the aviation and space-rocket complexes showed that they lead to explosions, fires, deaths and destruction of infrastructure. The causes of accidents and disasters are errors in the selection of technical solutions and materials during design, imperfection of algorithms and software for flight control systems, malfunctions in on-board computers and security systems, navigation systems, engine failure, defects in components and assemblies. Examples of accidents and disasters related to technical failures leading to a violation of the tightness of the aircraft fuselage and depressurization of spacecraft are given. It is shown that the main types of damage to the units are corrosion damage, fatigue and metal wear. The conclusion is made about the negative impact of the “human factor” regarding the adoption of erroneous decisions, failure to comply with regulatory requirements and actions in extreme situations. There is a risk of fatigue cracks and degradation of the properties of stringer metal, landing gear struts, wing tail trim, fuel tanks, engine pylon flanges, and imperfect methods, equipment, and technology for monitoring fatigue defects of critical components and mechanisms of aircraft, helicopters, and space systems. It is shown that modern achievements are poorly used in research and development of physical methods and diagnostics of elastic constants of metals working under high pressure, their changes in conditions of wide temperature drops, cosmic vacuum, vibration and other influences. It is proposed to combine efforts with scientists and experts in the field of strength, resource assessment and operational safety of aviation and space technology.
A review of the results of research, development and implementation of methods and technologies of acoustic strain measurement of split joints of liquid rocket engines for space launch vehicles is presented. A brief description of methods for measuring the incremental time of propagation of ultrasonic longitudinal waves and the ratio of longitudinal and shear wave velocities is given. The description of the developed and enacted GOST R 52889‒2007 “Non-destructive testing. Acoustic method of control of tightening force of threaded joints. General requirements”. Acoustic strain gauges, including those in regular operation at NPO Energomash, are described. A brief description of the specialized program “Acoustic Tensometer” is given, as well as a set of standard samples for performance control and preliminary adjustment of devices and calibration bench. The method of acoustic tensometry based on the ratio of longitudinal and shear wave velocities proposed by the specialists of NPO “Energomash” is described. The application of the method of acoustic strain gauge tightening of detachable joints, along with the improvement of the LPRD production technology, made it possible to completely eliminate leakage and leakage failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.