We present an efficient multi-modal method to describe the acoustic propagation in waveguides with varying curvature and cross section. A key feature is the use of a flexible geometrical transformation to a virtual space in which the waveguide is straight and has unitary cross section. In this new space, the pressure field has to satisfy a modified wave equation and associated modified boundary conditions. These boundary conditions are in general not satisfied by the Neumann modes, used for the series representation of the field. Following previous work, an improved modal method (MM) is presented, by means of the use of two supplementary modes. Resulting increased convergences are exemplified by comparison with the classical MM. Next, the following question is addressed: when the boundary conditions are verified by the Neumann modes, does the use of supplementary modes improve or degrade the convergence of the computed solution? Surprisingly, although the supplementary modes degrade the behaviour of the solution at the walls, they improve the convergence of the wavefield and of the scattering coefficients. This sheds a new light on the role of the supplementary modes and opens the way for their use in a wide range of scattering problems.