Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Waveform tomography, a combination of traveltime tomography (or inversion) and waveform inversion, is applied to vibroseis first-arrival data to generate an interpretable model of P-wave velocity for a site in the Nechako Basin, south-central British Columbia, Canada. We use constrained 3D traveltime inversion followed by 2D full-waveform inversion to process long-offset (14.4 km) first-arrival refraction waveforms, resulting in a velocity model of significantly higher detail than a conventional refraction-statics model generated for a processing workflow. The crooked-line acquisition of the data set makes 2D full-waveform inversion difficult. Thus, a procedure that improves the tractability of waveform tomography processing of vibroseis data recorded on crooked roads is developed to generate a near-surface ([Formula: see text]) velocity model for the study area. The data waveforms are first static corrected using a time shift determined by 3D raytracing, which accounts for the crossline offsets produced by the crooked-line acquisition. The velocity model generated from waveform tomography exhibits substantial improvement when compared with a conventional refraction-statics model. It also shows improved resolution of sharp discontinuities and low-velocity regions when compared to the model from traveltime tomography alone, especially in regions where the geometry errors are moderate. Interpretation of the near-surface velocity model indicates possible subbasins in the Nechako Basin and delineates the Eocene volcanic rocks of the study area. This approach limits the ability of the full-waveform inversion to fit some propagation modes; however, the tractability of the inversion in the near-surface region is improved. This new development is especially useful in studies that do not warrant 3D seismic acquisition and processing.
Waveform tomography, a combination of traveltime tomography (or inversion) and waveform inversion, is applied to vibroseis first-arrival data to generate an interpretable model of P-wave velocity for a site in the Nechako Basin, south-central British Columbia, Canada. We use constrained 3D traveltime inversion followed by 2D full-waveform inversion to process long-offset (14.4 km) first-arrival refraction waveforms, resulting in a velocity model of significantly higher detail than a conventional refraction-statics model generated for a processing workflow. The crooked-line acquisition of the data set makes 2D full-waveform inversion difficult. Thus, a procedure that improves the tractability of waveform tomography processing of vibroseis data recorded on crooked roads is developed to generate a near-surface ([Formula: see text]) velocity model for the study area. The data waveforms are first static corrected using a time shift determined by 3D raytracing, which accounts for the crossline offsets produced by the crooked-line acquisition. The velocity model generated from waveform tomography exhibits substantial improvement when compared with a conventional refraction-statics model. It also shows improved resolution of sharp discontinuities and low-velocity regions when compared to the model from traveltime tomography alone, especially in regions where the geometry errors are moderate. Interpretation of the near-surface velocity model indicates possible subbasins in the Nechako Basin and delineates the Eocene volcanic rocks of the study area. This approach limits the ability of the full-waveform inversion to fit some propagation modes; however, the tractability of the inversion in the near-surface region is improved. This new development is especially useful in studies that do not warrant 3D seismic acquisition and processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.