Abstract:Acoustic word embeddings are typically created by training a pooling function using pairs of word-like units. For unsupervised systems, these are mined using k-nearest neighbor (KNN) search, which is slow. Recently, mean-pooled representations from a pre-trained self-supervised English model were suggested as a promising alternative, but their performance on target languages was not fully competitive. Here, we explore improvements to both approaches: we use continued pre-training to adapt the self-supervised m… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.