To explore the feasibility of applying magnetorheological fluids (MRFs) in the field of noise control, the influence of the magnetic field intensity and direction on the sound transmission loss (STL) of a unit filled with MRF (MRF unit) were investigated in this study. First, two types of test sample containing the MRF unit were designed and fabricated. The magnetic field applied to the MRF was provided by the permanent magnets used in pairs. The direction of the magnetic field was perpendicular or parallel to the direction of the sound wave propagation. The distribution of the magnetic field intensity of the two types of test samples was simulated using magnetostatic finite element analysis and validated with the magnetic field intensity measured using a Teslameter. For comparison, test samples containing air and water units were also prepared. Then, the STL of the two types of test samples were measured under different magnetic field intensities using the impedance tube method. Finally, the STL curves of the two types of test samples were presented, and the influence of magnetic field intensity and direction on the STL were discussed. The results demonstrate that the magnetic field direction has a significant influence on the STL of the MRF unit. In addition, when the magnetic field direction is parallel to the sound propagation direction, the STL of the test sample containing MRF unit significantly increases with the increase of the magnetic field intensity at low and middle frequencies.