The propagation of a linearly polarized transverse sound wave in a semiconductor layer with a certain crystallographic structure with a sufficiently high concentration of conduction electrons is considered. The semiconductor layer is located in a spatially uniform magnetic field directed perpendicular to the plane of incidence of the sound wave and modulated with the sound frequency. The relationship between the plasma subsystem and acoustic oscillations in the layer is achieved due to the internal piezoelectric field. It is shown that propagation of a sound beam under these conditions is accompanied by a counterpropagating sound wave with a conjugated wave front. The conversion coefficient of direct and phase-conjugated waves is found.