Routinely, swim-up method is used to separate high-quality sperm; however, long processing time and close cell-to-cell contact during the centrifugation step are inevitable elements of oxidative stress to sperm. The objective was to evaluate Sephadex and glass wool filtration to separate motile, intact and viable sperm for in vitro fertilization in buffalo. The cumulus-oocyte complexes (COCs) were collected from ovaries of slaughtered buffaloes by aspiration and matured for 24 hr in CO incubator at 38.5°C and 5% CO . Matured COCs were rinsed twice in fertilization TALP and placed in the pre-warmed fertilization medium without sperm. Cryopreserved buffalo semen was thawed at 37°C for 30 s and processed through Sephadex , glass wool filtration and swim-up (control). Total and motile sperm recovery rates were assessed, resuspended in fertilization TALP and incubated for 15-20 min in CO incubator. Samples prepared by each method were divided into two aliquots: one aliquot was studied for sperm quality (progressive motility, membrane integrity, viability, liveability), while the other was subjected to co-incubation with sets of 10-15 in vitro matured oocytes. Data on sperm quality were analysed by ANOVA, while in vitro fertilizing rates were compared by chi-squared test using SPSS-20. Least significant difference (LSD) test was used to compare treatment means. Glass wool filtration yielded higher total and motile sperm recovery rate, while Sephadex filtration improved (p < .05) sperm quality (progressive motility, membrane integrity, viability, liveability). Sperm preparation through Sephadex filtration yielded higher in vitro fertilization rate in terms of cleavage rate compared to glass wool filtration and swim-up (control). In conclusion, cryopreserved Nili-Ravi buffalo sperm selected through Sephadex filtration showed improved quality and yielded better fertilization rates (cleavage rate) of in vitro matured/fertilized oocytes. Sephadex filtration could be a promising technique for use in in vitro fertilization in buffalo.