2023
DOI: 10.3390/chemosensors11090491
|View full text |Cite
|
Sign up to set email alerts
|

Acrylamide–Fat Correlation in Californian-Style Black Olives Using Near-Infrared Spectroscopy

Antonio Fernández,
Ismael Montero-Fernández,
Olga Monago-Maraña
et al.

Abstract: Californian-style is one of the most important black table olive elaborations. During its processing, table olives produce acrylamide, a potential carcinogen compound generated during sterilization. In the present study, total fat and acrylamide content in Californian-style table olives were determined and a regression between them was performed (acrylamide concentration range: below limit of detection—2500 ng g−1 and 8–22% for total fat). Nowadays, there are fast and efficient new techniques, such as Near-Inf… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 36 publications
0
1
0
Order By: Relevance
“…The main advantage of this analytic technique is its high sensitivity and resolution, which depend on the type of detector incorporated into the gas chromatograph equipment, allowing in some cases the identification of substances with concentrations as low as 1 × 10 −12 g. However, there are also other non-destructive techniques that could be considered for the same purpose [11]. These techniques include (a) infrared spectroscopy (analysis of the interaction of infrared light with molecules) [12], (b) Raman spectroscopy (analysis of the inelastic scattering of photons by matter after laser excitation) [13], (c) fluorescence spectroscopy (analysis of the light emissions which take place after the excitation of the electrons in a material) [14], (d) an electronic tongue (this is a multisensor system based on various sensor arrays with limited selectivity and allowing for advanced mathematical data analysis) [15], (e) nuclear magnetic resonance spectroscopy (analysis of the molecular structure of a material by observing and measuring the interaction of nuclear spins when placed in a powerful magnetic field) [16], (f) an electronic nose (captures the fingerprints of volatile organic compounds present in an alcoholic beverage sample using an array of semi-selective sensors) [17], (g) a colorimetric sensor array (produces a chemical interaction between the active center and analyte, which results in chemo-responsive changes in color) [18], (h) a combination of sensors (involves a data fusion approach with various sensors to acquire an optimal response) [19] and UV-Vis spectroscopy [20], which is the selected analytical technique carried out in the present work.…”
Section: Introductionmentioning
confidence: 99%
“…The main advantage of this analytic technique is its high sensitivity and resolution, which depend on the type of detector incorporated into the gas chromatograph equipment, allowing in some cases the identification of substances with concentrations as low as 1 × 10 −12 g. However, there are also other non-destructive techniques that could be considered for the same purpose [11]. These techniques include (a) infrared spectroscopy (analysis of the interaction of infrared light with molecules) [12], (b) Raman spectroscopy (analysis of the inelastic scattering of photons by matter after laser excitation) [13], (c) fluorescence spectroscopy (analysis of the light emissions which take place after the excitation of the electrons in a material) [14], (d) an electronic tongue (this is a multisensor system based on various sensor arrays with limited selectivity and allowing for advanced mathematical data analysis) [15], (e) nuclear magnetic resonance spectroscopy (analysis of the molecular structure of a material by observing and measuring the interaction of nuclear spins when placed in a powerful magnetic field) [16], (f) an electronic nose (captures the fingerprints of volatile organic compounds present in an alcoholic beverage sample using an array of semi-selective sensors) [17], (g) a colorimetric sensor array (produces a chemical interaction between the active center and analyte, which results in chemo-responsive changes in color) [18], (h) a combination of sensors (involves a data fusion approach with various sensors to acquire an optimal response) [19] and UV-Vis spectroscopy [20], which is the selected analytical technique carried out in the present work.…”
Section: Introductionmentioning
confidence: 99%