In this work, a newly prepared cationic/free-radical photopolymer, which consists of two epoxies and a tetrafunctional acrylate, is presented for the first time for a visible light stereolithography (SL), showing the advantages of both cationic and free-radical resins. An onium salt, commonly used as a cationic UV initiator, and a photosensitizer make the blend suitable for a near-visible (405 nm) SL. An increase in the polymerization rate and a drop in the induction period are observed for the newly prepared cationic/free-radical blend, compared with either only cationic systems or free-radical resins. This suggests that the combination of cationic and free-radical polymerizations in a single resin has a positive synergistic effect. The addition of silica nanoparticles to the blend provides a reinforcing and toughening effect. Indeed, the resin loaded with silica shows a 31% increase in the elastic modulus, compared with the unfilled resin. Regarding the values of tensile strength and elongation at break, they, respectively, grow by 47 and 15%, when the nanocomposite resin is compared with the neat resin. A very low volumetric shrinkage of 0.7% and a remarkable printing quality of objects obtained with this new photopolymer will enable the 3D printing of microrobots, bioengineering microdevices, and sensors.A key characteristic of onium salts is the possibility of undergoing either homo-or heterolytic cleavage, simultaneously producing either a radical cation/aryl radical pair or an aryl cation. 22,23 Therefore, the same photoinitiator may start both cationic and Additional Supporting Information may be found in the online version of this article. M. Invernizzi and R. Suriano contributed equally to this article.