While actin was discovered in the nucleus over 50 years ago, research lagged for decades due to strong skepticism. The revitalization of research into nuclear actin occurred after it was found that cellular stresses induce the nuclear localization and alter the structure of actin. These studies provided the first hints that actin has a nuclear function. Subsequently, it was established that the nuclear import and export of actin is highly regulated. While the structures of nuclear actin remain unclear, it can function as monomers, polymers, and even rods. Furthermore, even within a given structure, distinct pools of nuclear actin that can be differentially labeled have been identified. Numerous mechanistic studies have uncovered an array of functions for nuclear actin. It regulates the activity of RNA polymerases, as well as specific transcription factors. Actin also modulates the activity of several chromatin remodeling complexes and histone deacetylases, to ultimately impinge on transcriptional programing and DNA damage repair. Further, nuclear actin mediates chromatin movement and organization. It has roles in meiosis and mitosis, and these functions may be functionally conserved from ancient bacterial actin homologs. The structure and integrity of the nuclear envelope and sub-nuclear compartments are also regulated by nuclear actin. Furthermore, nuclear actin contributes to human diseases like cancer, neurodegeneration, and myopathies. Here, we explore the early discovery of actin in the nucleus and discuss the forms and functions of nuclear actin in both normal and disease contexts