Inflammasome mechanisms are involved as some of the pathways of sterile inflammation. Inflammasomes are large multiprotein complexes in the cytosol and are a key system for the production of the pivotal inflammatory cytokines, interleukin (IL)-1β and IL-18, and inflammatory cell death called pyroptosis. Although a number of inflammasomes have been described, the nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) is the most extensively investigated inflammasome. Exogenous pathogen-associated molecular patterns released during infection and endogenous crystalline danger/damage-associated molecular patterns (DAMPs) are well-known activators of NLRP3 inflammasomes. In addition, nanoparticle-associated molecular patterns (NAMPs), which are mediated by synthetic materials, including nanomaterials and nanoparticles, are proposed to be new danger signals of NLRP3 inflammasomes. Importantly, NAMP-and DAMPtriggered inflammation, a defining characteristic in inflammatory diseases, is termed as sterile inflammation because it occurs in the absence of foreign pathogens. This review focuses on the role of inflammasomes in exogenous NAMP-and endogenous crystalline DAMP-mediated sterile inflammation. Moreover, many regulatory mechanisms have been identified to attenuate NLRP3 inflammasomes. Therefore, we also summarize endogenous negative regulators of NLRP3 inflammasome activation, particularly induced by NAMPs or crystalline DAMPs.