The authors evaluated the feasibility of using coherent scattering microscopy (CSM) as an actinic metrology tool by employing it to determine the critical dimension (CD) and normalized image log-slope (NILS) values of contaminated extreme ultraviolet (EUV) masks. CSM was as effective as CD scanning electron microscopy (CD-SEM) in measuring the CD values of clean EUV masks in the case of vertical patterns (nonshadowing effect); however, only the CSM could detect shadowing effect for horizontal patterns resulting in smaller clear mask CD values. Owing to weak interaction between the low-density contaminant layer and EUV radiation, the CSM-based CD measurements were not as affected by contamination as were those made using CD-SEM. Furthermore, CSM could be used to determine the NILS values under illumination conditions corresponding to a high-volume manufacturing tool.