Nonhydrolyzable phosphotyrosyl (pTyr) mimetics serve as important components of many competitive Grb2 SH2 domain inhibitors. To date, the most potent of these inhibitors have relied on phosphonate-based structures to replace the 4-phosphoryl group of the parent pTyr residue. Reported herein is the design and evaluation of a new pTyr mimetic, p-malonylphenylalanine (Pmf), which does not contain phosphorus yet, in Grb2 SH2 domain binding systems, approaches the potency of phosphonate-based pTyr mimetics. When incorporated into high affinity Grb2 SH2 domain-directed platforms, Pmf is 15-20 times more potent than the closely related previously reported pTyr mimetic, O-malonyltyrosine (OMT). Pmf-containing inhibitors show inhibition constants as low as 8 nM in extracellular Grb2 binding assays and in whole cell systems, effective blockade of both endogenous Grb2 binding to cognate erbB-2, and downstream MAP kinase activation. Evidence is provided that use of an N(alpha)()-oxalyl auxiliary enhances effectiveness of Pmf and other inhibitors in both extracellular and intracellular contexts. As one of the most potent Grb2 SH2 domain-directed pTyr mimetics yet disclosed, Pmf may potentially have utility in the design of new chemotherapeutics for the treatment of various proliferative diseases, including breast cancer.