General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Abstract. This paper is concerned with nature conservation by automatically monitoring animal distribution and animal abundance. Typically, such conservation tasks are performed manually on foot or after an aerial recording from a manned aircraft. Such manual approaches are expensive, slow and labor intensive. In this paper, we investigate the combination of small unmanned aerial vehicles (UAVs or "drones") with automatic object recognition techniques as a viable solution to manual animal surveying. Since no controlled data is available, we record our own animal conservation dataset with a quadcopter drone. We evaluate two nature conservation tasks: i) animal detection ii) animal counting using three state-of-the-art generic object recognition methods that are particularly well-suited for on-board detection. Results show that object detection techniques for human-scale photographs do not directly translate to a drone perspective, but that light-weight automatic object detection techniques are promising for nature conservation tasks.