In non-photosynthetic, yellow or colourless mutant cells of Chlorella kessleri, grown with nitrate as sole nitrogen source, blue light inhibited the uptake of the amino acids glycine, proline and arginine and of ammonia in growing cells, while it enhanced the uptake of these amino acids in resting cells. On the other hand, in cells grown with ammonia as the only nitrogen source without nitrate reductase activity, blue light did not influence the uptake of amino acids and of ammonia in growing cells, while it enhanced the uptake of amino acids in resting cells. Addition of methionine sulphoximine, a potent inhibitor of glutamine synthetase, to growing cells, resulted in intracellular ammonia-accumulation and inhibition of uptake of glycine and of ammonia. For the colourless mutant, blue light was shown to activate purified nitrate reductase. These results indicate that in the mutant cells of Chlorella examined, uptake of ammonia seems to be influenced by nitrate reductase and the uptake of amino acids was influenced by both nitrate reductase and an unknown blue-light-receptor(s). The uptake of urea in mutant cells is not influenced by the irradiation with blue light. Uptake of glycine was also increased after addition of glucose (hexose) in the dark. Because blue light is known to enhance the breakdown of starch, a reaction producing glucose for oxidative degradation in the algae used, the role of glucose (hexose) in the blue light-affected uptake of amino acids is discussed.