The chlorophyll-protein complexes that form the antenna system of photosystem II have been purified and analyzed in terms of the commonly observed chlorophyll spectral forms. With the exception of chlorophyll b, which is known to be associated with the complexes comprising the outer antenna (LHCII, CP24, CP26, CP29), the spectral forms occur with similar absorption maxima and are present in rather similar amounts in each of the antenna complexes. On the basis of the published chlorophyll stoichiometries for the complexes in photosystem II antenna, the distribution of the spectral forms in a "reconstituted" antenna has been determined. These data were used to calculate the equilibrium population of excited states within the various chlorophyll-protein complexes within photosystem II. This was compared with the light absorption capacity of each of the complexes in the "reconstituted" antenna. The ratio of these two parameters (excited-state equilibrium distribution/absorption capacity) was determined to be 1.21 for the inner (core) antenna and 0.88 for LHCII. The standard free energy change for exciton transfer from the outer to the inner antenna was calculated to be -0.17 kcal mol-1. It is concluded that the photosystem II antenna is arranged as a very shallow funnel.