Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated Fe2O3-SiO2/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of Fe2O3/SiO2 (5–45 wt%) on the MXene with a range of calcination temperatures (300–600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency. The 25FeS/MX-450 composite among all samples demonstrated a superior efficiency in TC photocatalytic removal (98%) under optimised conditions (TC degradation: 39.75 mg/L, time: 68.28 min, pH: 5.57, catalyst dosage: 0.75 g/L). The developed surface area, with a reduced band gap due to FeS nanoparticles incorporation with improved light absorption within the visible spectrum, played a crucial role in the 25FeS/MX-450 heterostructure matrix, enhancing photogenerated carriers’ separation and transportation capabilities. The tetracycline photoreduction mechanism involved electron transfer from FeS to the surface of MXene, engaging with O2 to produce •O2−, attributed to the high electron mobility of MXene. Our findings for such nano-photocomposites materials can underscore the considerable potential of MXene-based nanomaterials for pharmaceutical removal from waterways.
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated Fe2O3-SiO2/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of Fe2O3/SiO2 (5–45 wt%) on the MXene with a range of calcination temperatures (300–600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency. The 25FeS/MX-450 composite among all samples demonstrated a superior efficiency in TC photocatalytic removal (98%) under optimised conditions (TC degradation: 39.75 mg/L, time: 68.28 min, pH: 5.57, catalyst dosage: 0.75 g/L). The developed surface area, with a reduced band gap due to FeS nanoparticles incorporation with improved light absorption within the visible spectrum, played a crucial role in the 25FeS/MX-450 heterostructure matrix, enhancing photogenerated carriers’ separation and transportation capabilities. The tetracycline photoreduction mechanism involved electron transfer from FeS to the surface of MXene, engaging with O2 to produce •O2−, attributed to the high electron mobility of MXene. Our findings for such nano-photocomposites materials can underscore the considerable potential of MXene-based nanomaterials for pharmaceutical removal from waterways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.