IMPORTANCELike all herpesviruses, latency is an integral part of the life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent for many human cancers. Herpesviruses utilize viral and host factors to successfully evade the host immune system to maintain latency. Reactivation is a complex event where the latent episomal viral genome springs back to active transcription of lytic cycle genes. Our studies reveal that KSHV has evolved to utilize the innate immune sensor IFI16 to keep lytic cycle transcription in dormancy. We demonstrate that IFI16 binds to the lytic gene promoter, acts as a transcriptional repressor, and thereby helps to maintain latency. We also discovered that during the late stage of lytic replication, KSHV selectively degrades IFI16, thus relieving transcriptional repression. This is the first report to demonstrate the role of IFI16 in latency maintenance of a herpesvirus, and further understanding will lead to the development of strategies to eliminate latent infection.
The human gammaherpesvirus Kaposi's sarcoma (KS)-associated herpesvirus (KSHV), also referred to as human herpesvirus 8 (HHV-8), is an oncogenic virus etiologically associated with KS, primary effusion B-cell lymphoma (PEL) or body cavity B-cell lymphoma (BCBL), and plasmablastic multicentric Castleman's disease (pMCD) (1-3). In vivo, KSHV DNA and transcripts have been identified in human B cells, endothelial cells, epithelial cells, macrophages, and keratinocytes (3, 4). Similar to other herpesviruses, KSHV undergoes two distinguishable phases in its life cycle: latent and lytic infection (3, 4). During primary infection, KSHV initially establishes latent infection in specific target cells, during which multiple copies of the viral genome are stably maintained as extrachromosomal episomes (3,5). Only a few viral genes, primarily localized in the major latency locus of the genome, are expressed during this phase. These gene products bestow numerous essential functionalities to the dormant viral genome, such as evading host immune surveillance (6), promoting cellular proliferation (7-9), maintaining the viral episome (10), and tightly suppressing viral lytic gene expression (11). However, both spontaneous reactivation and induced reactivation of the latent genome occur, resulting in the systematic expression of the full repertoire of viral genes, which leads to viral genome replication and virion production (4). Previous studies suggested that lytic reactivation