Proliferative inhibition of estrogen-receptor positive (ER+) breast cancers after short-term antiestrogen therapy correlates with long-term patient outcome. We profiled 155 ER+/HER2– early breast cancers from 143 patients treated with the aromatase inhibitor letrozole for 10-21 days before surgery. Twenty-one percent of tumors remained highly proliferative suggesting these tumors harbor alterations associated with intrinsic endocrine therapy resistance. Whole-exome sequencing revealed a correlation between 8p11-12 and 11q13 gene amplifications, including FGFR1 and CCND1, respectively, and high Ki67. We corroborated these findings in a separate cohort of serial pre-treatment, post-neoadjuvant chemotherapy, and recurrent ER+ tumors. Combined inhibition of FGFR1 and CDK4/6 reversed antiestrogen resistance in ER+ FGFR1/CCND1 co-amplified CAMA1 breast cancer cells. RNA sequencing of letrozole-treated tumors revealed intrachromosomal ESR1 fusion transcripts and gene expression signatures in cancers with high Ki67, indicative of enhanced E2F-mediated transcription and cell cycle processes. These data suggest short-term pre-operative estrogen deprivation followed by genomic profiling can be used to identify druggable alterations potentially causal to intrinsic endocrine therapy resistance.