Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Hypertension is a leading risk factor for disability and deaths worldwide. Evidence indicates that alpha-mangostin(α-MG) can reduce blood pressure and improve target organ damage. Nonetheless, its pharmacological targets and potential mechanisms of action remain inadequately elucidated. Method We used SwissTargetPrediction to identify α-MG’s drug targets and DisGeNET, GeneCards, CTD, and GEO databases for hypertension-related targets, and then determined antihypertensive therapeutic targets of α-MG by intersecting these targets. GO functional enrichment analysis, KEGG pathway analysis, and disease association analysis were conducted using the DAVID database and R package “clusterprofile”, visualized with Cytoscape software. The binding affinity of α-MG to identified targets was confirmed through molecular docking using Autodock Vina v.1.2.2 software. The impact of α-MG on target genes was validated using an Angiotensin II-induced hypertensive mouse model and RT-qPCR. Results A total of 51 potential antihypertensive therapeutic targets for α-MG were identified by intersecting 109 drug targets with 821 disease targets. Furthermore, 10 cellular component terms, 10 disease terms, and the top 20 enriched biological processes, molecular functions, and KEGG pathways related to α-MG’s antihypertensive effects were documented. Molecular docking studies indicated a strong binding affinity of α-MG with the HSP90AA1 domain. In Ang II-induced hypertensive mice aorta, treatment with α-MG effectively reversed the aberrant mRNA expression of TNF, HSP90AA1, NFKB1, PPARG, SIRT1, PTGS2, and RELA. Conclusion Our analyses showed that TNF, HSP90AA1, NFKB1, PPARG, SIRT1, PTGS2, and RELA might be α-MG’s potential therapeutic targets for hypertension, laying groundwork for further investigation into its pharmacological mechanisms and clinical uses.
Background Hypertension is a leading risk factor for disability and deaths worldwide. Evidence indicates that alpha-mangostin(α-MG) can reduce blood pressure and improve target organ damage. Nonetheless, its pharmacological targets and potential mechanisms of action remain inadequately elucidated. Method We used SwissTargetPrediction to identify α-MG’s drug targets and DisGeNET, GeneCards, CTD, and GEO databases for hypertension-related targets, and then determined antihypertensive therapeutic targets of α-MG by intersecting these targets. GO functional enrichment analysis, KEGG pathway analysis, and disease association analysis were conducted using the DAVID database and R package “clusterprofile”, visualized with Cytoscape software. The binding affinity of α-MG to identified targets was confirmed through molecular docking using Autodock Vina v.1.2.2 software. The impact of α-MG on target genes was validated using an Angiotensin II-induced hypertensive mouse model and RT-qPCR. Results A total of 51 potential antihypertensive therapeutic targets for α-MG were identified by intersecting 109 drug targets with 821 disease targets. Furthermore, 10 cellular component terms, 10 disease terms, and the top 20 enriched biological processes, molecular functions, and KEGG pathways related to α-MG’s antihypertensive effects were documented. Molecular docking studies indicated a strong binding affinity of α-MG with the HSP90AA1 domain. In Ang II-induced hypertensive mice aorta, treatment with α-MG effectively reversed the aberrant mRNA expression of TNF, HSP90AA1, NFKB1, PPARG, SIRT1, PTGS2, and RELA. Conclusion Our analyses showed that TNF, HSP90AA1, NFKB1, PPARG, SIRT1, PTGS2, and RELA might be α-MG’s potential therapeutic targets for hypertension, laying groundwork for further investigation into its pharmacological mechanisms and clinical uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.