1. Synaptic vesicles were isolated and fused into large structures with a diameter of more than 20 #sm to characterize their ionic channels. The 'cell'-attached and inside-out configurations of the patch clamp technique were used. 2. Two types of ion channels were most frequently observed: a low conductance chloride channel and a high conductance non-specific channel. 3. The non-specific channel has a main conducting state and a substate. The main conducting state has a slope conductance of 246 + 15 pS (± S.E.M., n = 15), in the presence of different combinations of KCl and potassium glutamate. 4. From the reversal potentials of the current-voltage (I-V) relation, it was concluded that this channel conducts both Cl-and K+.5. The non-specific channel is highly voltage dependent: under steady-state voltages it has a high open probability near 0 mV and does not inactivate; when the membrane is hyperpolarized (pipette side more positive), the open probability decreases dramatically. 6. Voltage pulses showed that upon hyperpolarization (from holding potentials between -20 and +20 mV), the channels deactivated; when the membrane was stepped back to the holding potential, the channels reactivated rapidly. 7. In a number of experiments, when the pipette side was made more negative than the bath, the open probability also decreased. 8. Frequently, a substate with a conductance of about 44 + 4% (± S.E.M., n = 3) of the main state was detected. 9. We speculate that this non-specific ion channel may have different roles at the various stages of the life cycle of the synaptic vesicle. When the synaptic vesicle is an intracellular structure, it might help its transmitter-concentrating capacity by dissipating the polarization. After fusion with the surface membrane, it might constitute an additional conductance pathway, taking part in frequency modulation of synaptic transmission.